

Certified Wireless Network Professional

Rameshwar Nigam General Manager @CWNP

Securing Wireless Networks

Agenda

Types of WLAN attacks

Security vulnerabilities

Wi-Fi Ease of use – WPS and it's issues

How to mitigate the attacks

MAC identity spoof attacks

- MAC spoofing attack is still used with great effect at public-access WLAN hotspot.
- A MAC piggy-backing attack is used to circumvent the hotspot captive portal login requirement.
- The intent is not to break into the network, but the exploit the way captive portal works.

Denial Of Service attacks

Layer 1 DOS Attacks:

- Unintentional Interference
- Intentional Interference
- Queensland attack

Layer 2 DOS Attacks:

- Illegal Channel beaconing
- Probe response flood
- Association Flood
- Fake AP
- Virtual-carrier attack

A cracker overwhelms an access point with thousands of tasks or a large amount of network traffic, preventing legitimate users from connecting to the network

Man in the middle attack

- Evil Twin Attack
- Wi-Fi phishing Attack

Static WEP cracking programs

Rogue Access Point attack programs

Potential Risks

- Data Theft
- Data Destruction
- Malicious Data Insertion
- Third-Party Attacks

Wireless Security Vulnerabilities

Wi-Fi ease of use – WPS and its issue

- WPS is a network security standard to create a secure wireless home network
- User can easily configure a network with security protection by using a personal identification number (PIN) or a button located on the access point and the client device.
- WPS was developed by the Wi-Fi Alliance and is a protocol specification that rides over the existing IEEE 802.11-2007 standard.
- Security setup options are personal information number (PIN), push-button configuration (PBC), Near Field Communication (NFC) tokens and Universal Serial Bus (USB) flash drives.

Authentication (PIN – External Registrar)

IEEE 802.11				
Supplicant> AP		Authentication Request	802.11 Authentication	
Supplicant < AP		Authentication Response	802.11 Authenticatio	
Supplicant> AP		Association Request	002 11 Acceptation	
Supplicant < AP		Association Response	802.11 Association	

IEEE 802.11/EAP			
Supplicant> AP	EAPOL-Start		
Supplicant < AP	EAP - Request Identity		
Supplicant> AP	EAP - Response Identity (Identity: "WFA- SimpleConfig-Registrar-1- 0")	EAP Initiation	

...the vulnerability

	IEEE 802.11/EAP Expanded Type, Vendor ID: WFA (0x372A), Vendor Type: SimpleConfig (0x01)				
M1	Enrollee> Registrar	N1 Description PK _E			
M2	Enrollee < Registrar	N1 N2 Description PK _R Authenticator	Diffie-Hellman Key Exchange		
M3	Enrollee> Registrar	N2 E-Hash1 E-Hash2 Authenticator			
M4	Enrollee < Registrar	N1 R-Hash1 R-Hash2 E _{KeyWrapKey} (R-S1) Authenticator	proove posession of 1st half of PIN		
M5	Enrollee> Registrar	N2 E _{KeyWrapKey} (E-S1) Authenticator	proove posession of 1st half of PIN		
M6	Enrollee < Registrar	N1 E _{KeyWrapKey} (R-S2) Authenticator	proove posession of 2nd half of PIN		
M7	Enrollee> Registrar	N2 E _{KeyWrapKey} (E-S2 ConfigData) Authenticator	proove posession of 2nd half of PIN, send AP configuration		
M8	Enrollee < Registrar	N1 E _{KeyWrapKey} (ConfigData) Authenticator	set AP configuration		

1	2	3	4	5	6	7	0
1st half of						checksum	
PIN				2 nd	half	of PIN	

Pixie Dust WPS attack/Reaver brute force attack can easily crack WPS PIN

Mitigating the risks

- Wireless Security Auditing
 - OSI Layer 1 Auditing
 - OSI Layer 2 Auditing
 - Penetration Testing
- Wireless Security Policies
 - Functional Policy
 - Government and Industry Regulations
- Wireless Security Monitoring
 - Wireless Intrusion Detection and Prevention System

Wireless Security Audit

Type of Use	Possible Audit/Attack	Tools
Wireless discovery	Eavesdropping, discovery of rogue APs, ad hoc STAs and open/misconfigured Aps	NetStumbler, Kismet, Wellenreiter, WiFiFoFum, WiFi Hopper, Win Sniffer, Wireshark and commercial WLAN protocol analyzer
Encryption/Authentication	WEP, WPA, LEAP cracking, dictionary attacks	Asleap, Aircrack-ng, coWPAtty, AirSnort, WEPCrack, WZCook and THC-LEAP cracker
Masquerade	MAC spoofing, man-in- the-middle attacks, evil twin attacks, Wi- Fi phishing attacks	Airsnarf, Ettercap Karma, Hotspotter, HostAP, SMAC
Insertion	Multicast/broadcast injection, routing cache poisoning, manin-the middle attacks	Airpwn, WEPWedgie, chopchop, VIPPR, IRPass, CDPsniffer
Denial of Service	Layer 1 and Layer 2 Dos	Airjack, Void11, Bugtraq, IKECrack, FakeAP and RF signal generator

Wireless Security Monitoring

Wireless Intrusion Detection System/Wireless Intrusion Prevention System				
Infrastructure Component WIPS/WIDS server Management consoles Sensors				
Architecture Models	Overlay	Integrated	Integration enabled	

WIDS/WIPS Inputs				
Multiple Radio Sensors Sensor Placement Device Classification				
Rogue Mitigation Device Tracking Rogue Detection				

WIDS/WIPS Analysis				
Signature Analysis Behavioral Analysis Protocol Analysis				
Spectrum Analysis Performance Analysis Reports				

References

- CWSP Official Study Guide
- WCN Netspec : http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0ab18336565f5b/WCN-Netspec.doc
- Building a Pentesting Lab for Wireless Network by Vyacheslav Fadyushin,
 Andrey Popov

Q&A

Dziękuję